Back to Top

Nέο θερμοηλεκτρικό υλικό που εξοικονομεί ενέργεια

Tα δύο τρίτα της ενέργειας που καταναλώνει ο άνθρωπος, από τη βενζίνη που καίνε τα αυτοκίνητα μέχρι το ηλεκτρικό ρεύμα που ξοδεύουμε για φωτισμό, χάνεται τελικά στο περιβάλλον υπό τη μορφή θερμότητας. Τώρα, ένα νέο υλικό που μετατρέπει τη ζέστη σε ηλεκτρικό ρεύμα υπόσχεται να μετριάσει σημαντικά τις σπατάλες ενέργειας.

Το νέο υλικό, αποτελούμενό κυρίως από μόλυβδο και τελλούριο, είναι μια παραλλαγή του υλικού που κρύβεται στη θερμοηλεκτρική γεννήτρια του ρομπότ Opportunity στον Άρη.. Θα μπορούσε να χρησιμοποιηθεί στα αυτοκίνητα, όπου θα μπορούσε να μετατρέπει τη θερμότητα σε ηλεκτρικό ρεύμα για τη φόρτιση της μπαταρίας σε υβριδικά μοντέλα. Θα μπορούσε επίσης να αξιοποιηθεί σε ενεργοβόρες βιομηχανίες, ακόμα και σε κινητήρες εσωτερικών καύσεων που παραμένουν συνεχώς σε λειτουργία, όπως οι κινητήρες των πλοίων.

Τα θερμοηλεκτρικά υλικά είναι γνωστά εδώ και χρόνια, μέχρι σήμερα όμως η απόδοσή τους ήταν υπερβολικά μικρή για να μπορούν να αξιοποιηθούν σε εμπορική κλίμακα. Χάρη στις ηλεκτρικές τους ιδιότητες και την ιδιαίτερη μικροσκοπική δομή τους, τα υλικά αυτά μετατρέπουν τη διαφορά θερμοκρασίας σε ροή ηλεκτρονίων, δηλαδή σε ηλεκτρικό ρεύμα: όταν η μία άκρη του υλικού είναι θερμότερη από την άλλη δημιουργείται ανάμεσά τους μια διαφορά τάσης, όπως συμβαίνει και στους πόλους μιας μπαταρίας.

Στο εσωτερικό οποιουδήποτε στερεού υλικού, η θερμότητα μπορεί να θεωρηθεί ως μικροσκοπικές κβαντικές ταλαντώσεις των ατόμων, τις οποίες οι φυσικοί ονομάζουν «φωνόνια». Όπως τα κύματα του ήχου ή τα κύματα της ηλεκτρομαγνητικής ακτινοβολίας, καθένα από τα φωνόνια αυτά έχει το δικό του μήκος κύματος.

Η υψηλή αποδοτικότητα του νέου υλικού, αναφέρουν στο βρετανικό περιοδικό Nature οι ερευνητές του Πανεπιστημίου Northwestern στο Ίλινοϊ, οφείλεται στο γεγονός ότι αξιοποιεί τις ταλαντώσεις σε πολλά μήκη κύματος: μικρά, μεσαία και μεγάλα.

Στο εσωτερικό του υλικού, μικροσκοπικοί κόκκοι του στοιχείου τελλούριου απορροφούν ενέργεια από φωνόνια με μήκος κύματος μερικές εκατοντάδες ή χιλιάδες νανόμετρα (δισεκατομμυριοστά του μέτρου. Μικροσκοπικά σωματίδια τελλουριούχου στροντίου απορροφούν φωνόνια μέσου μήκους κύματος, ενώ ακόμα μικρότερα μήκη κύματος απορροφώνται από ίχνη νατρίου που ενσωματώθηκαν στους κρυστάλλους του υλικού.
Η προσεκτική ρύθμιση της εσωτερικής δομής του υλικού επέτρεψε στους ερευνητές να αυξήσουν την απόδοσή τους στο 15 με 20 τοις εκατό, συγκρίσιμη με την απόδοση των σημερινών φωτοβολταϊκών συστημάτων.

«Στο επίπεδο αυτό, υπάρχουν ρεαλιστικές προοπτικές για την ανάκτηση της χαμένης θερμότητας και τη μετατροπή της σε χρήσιμη ενέργεια» εκτιμά ο Μέρκιουρι Κανατζίδης, επικεφαλής της ερευνητικής ομάδας. Συγκριτικά, η θερμοηλεκτρική γεννήτρια του Curiosity, η οποία παράγει ηλεκτρική ενέργεια από τη θερμότητα που παράγεται από τη διάσπαση μιας ποσότητας πλουτωνίου, έχει τη μισή απόδοση σε σχέση με το νέο υλικό.

Σύμφωνα με τους ερευνητές, η θερμοηλεκτική τεχνολογία επιδέχεται ακόμα σημαντικών βελτιώσεων, όχι όμως επ΄αόριστον: ο δεύτερος νόμος της θερμοδυναμικής προβλέπει ότι είναι αδύνατο να κατασκευαστεί μια μηχανή που λειτουργεί χωρίς να αποβάλλει έστω και λίγη θερμότητα.

Πηγή: http://www.tovima.gr/science/technology-planet/article/?aid=475889

Τύπος Είδησης: 

Δημοφιλη

Επαγγελματική Συμβουλευτική

Συγγραφή Βιογραφικού
Σύνταξη Επιχειρηματικού Σχεδίου

Χρησιμοποιήστε τις Online Eφαρμογές που έχει αναπτύξει το Γραφείο Διασύνδεσης Δ.Π.Θ. για

Παρουσιάσεις Εταιρειών

Εργαστηρια Δ.Π.Θ.

Αναζητήστε εργαστήρια των σχολών του ΔΠΘ και εκδηλώστε ενδιαφέρον για συνεργασία και μεταφορά τεχνολογίας

Επιχειρηματικοτητα

Followme

followme
  • Twitter
  • Facebook
  • Linkedin
  • Mixcloud
  • Instagram
  • YouTube

Newsletter

Συμπληρώστε το e-mail σας και θα λαμβάνετε περιοδικά το Δελτίο Τύπου της Ραδιοφωνικής Εκπομπής "Διασυνδεθείτε".

Παρακαλώ, όσοι διαθέτετε λογαριασμό e-mail του Δ.Π.Θ μην τον χρησιμοποιείτε για την εγγραφή σας στο newsletter της Δομής Απασχόλησης & Σταδιοδρομίας του Δ.Π.Θ.

Πρoσφατα Aρθρα

Πλοήγηση